앞 내용에서 반응변수(y) 값의 좋은 예측변수(x)를 찾기 위해 최소제곱(Least Squares)을 이용하였는데 이때 최선의 적합(the best possible fit)이라 할 수 있지만 좋은 예측력(predictive power)이라 할 수 없다. (예시로 x말고 z가 있는 다른 예측변수가 있는 경우) 이번 글에서는 적합도에 대해 알아보고자 한다. 먼저 평균에 대한 y의 변동을 식으로 표현하면 $$\sum_{i=1}^{n}(y_i-\bar{y})^{2}$$ 이러한 식을 SST(Total Sum of Squares)(전체제곱합)이라고 한다. 평균으로부터 y값의 일탈(deviation)을 회귀선으로부터 y값의 일탈과 평균으로부터 회귀선의 일탈의 합으로 표현하면 $$y_i-\overline{y}=y_i-..